Cloud Services in combination with high performance in-memory computing will change how enterprises work. Currently, most of the data is stored in silos of slow disk-based row-oriented database systems. Besides, transactional data is not stored in the same database as analytical data, but in separate data warehouses and gets replicated in batch jobs. Consequently, instant real time analytics are not possible and company leaders often have to make decisions in a very short time frame based on insufficient information.
This is about to change. In the last decade, hardware architectures have evolved dramatically. Multi core architectures and the availability of large amounts of main memory at low costs are about to set new breakthroughs in the software industry. It has become possible to store data sets of whole companies entirely in main memory, which offers a performance that is orders of magnitudes faster than disk. Traditional disks are one of the remaining mechanical devices in a world of silicon and are about to become the new tape, only necessary for backup. With in-memory computing and hybrid databases using row or column stores where appropriate, transactional and analytic data storages will be unified.
Cloud Computing will provide the elasticity, flexibility, and possibility to access all information of a company from everywhere whereas in-memory computing in combination with hybrid databases will enable systems to provide all information in real-time. With clouds, the IT infrastructure and data storage can automatically grow with the demand of the company. Even in case of an unpredictable higher workload, tomorrow’s systems will automatically request the necessary amount of computing power and will, therefore, be able to guarantee higher service availability at reduced costs. Therefore, current software management and monitoring systems have to be adapted and modified for the new in-memory computing paradigm.
Clouds will be totally stored in RAM and, in consequence, durable storage such as disks will only be used for backup purposes. Updates will not be stored synchronously on disk but will be replicated synchronously to further servers in order to guarantee data consistency even in case of hardware failures. For enterprise environments, clouds will not base on commodity hardware, but on high-end servers, which offer a much higher reliability and higher performance. By providing information from everywhere in real-time at high availability but low costs, such new technologies will offer enterprises entirely new opportunities how businesses are run and operated.
At the chair of Prof. Dr. Hasso Plattner and Dr. Alexander Zeier at the Hasso-Plattner Institute, we are conducting research projects how enterprises can access information in real-time. We built an in-memory hybrid database that unifies the advantages of column- and row oriented database systems. In corporation projects with SAP, we could show that with in-memory column-oriented databases the time for business transactions, like dunning, can be reduced from 20 min to 1s. We are also augmenting Available-to-Promise applications with real time analytics and flexible order fulfillment. We are conducting research how multi-tenant analytics can be provided through a cloud-based infrastructure. Besides, we are analyzing architectures for clouds that are totally stored in main memory and how software management systems can be adapted to provide high service availability at low costs.
Author: Jan Schaffner
February 9, 2011
February 7, 2011
The Game Changer
In-memory data management technology in combination with highly parallel processing has a tremendous impact on business applications, for example, by having all enterprise data instantly available for analytical needs. Guided by Hasso Plattner, we, a team of researchers under the supervision of Alexander Zeier at the Hasso Plattner Institute, analyzed and evaluated how business applications are developed and used starting in 2006.
With the support and requirements of real customers, we developed an in-memory database in co-operation with SAP that is best suited for today's and tomorrow's enterprise needs. The enormous performance implications on enterprise applications such a database has changed the way enterprise applications will be written in the future. These applications will leverage the massive amount of main memory and parallel computing power. New applications can be developed that were not even thinkable today because of technological shortfalls.
The upcoming book "In-Memory Data Management: An Inflection Point for Enterprise Applications" by Prof. Hasso Plattner and Dr. Alexander Zeier is the culmination of the last five years worth of in-memory research. It provides the technical foundation for combined transactional and analytical workloads inside the same database as well as examples of new applications that are now possible given the availability of the new technology.
To discuss how in-memory technology helps today's enterprises to achieve their goals in a smarter and faster way, you are invited to visit us at CeBIT at SAP's main booth in hall 4 or at the HPI booth in hall 9, or leave a comment in our blog.
Author: Christian Schwarz
I am [...] very excited about the potential that the in-memory database technology offers to my business.
With the support and requirements of real customers, we developed an in-memory database in co-operation with SAP that is best suited for today's and tomorrow's enterprise needs. The enormous performance implications on enterprise applications such a database has changed the way enterprise applications will be written in the future. These applications will leverage the massive amount of main memory and parallel computing power. New applications can be developed that were not even thinkable today because of technological shortfalls.
In-Memory Data Management - Book by Hasso Plattner and Alexander Zeier |
To discuss how in-memory technology helps today's enterprises to achieve their goals in a smarter and faster way, you are invited to visit us at CeBIT at SAP's main booth in hall 4 or at the HPI booth in hall 9, or leave a comment in our blog.
Author: Christian Schwarz
February 2, 2011
Enterprise-specific Data Management
Traditionally, the database market divides into transaction processing (OLTP) and analytical processing (OLAP) workloads. OLTP workloads are characterized by a mix of reads and writes to a few rows at a time, typically through a B+Tree or other index structures. Conversely, OLAP applications are characterized by bulk updates and large sequential scans spanning few columns but many rows of the database, for example to compute aggregate values. Typically, those two workloads are supported by two different types of database systems transaction processing systems and warehousing systems.
In fact, enterprise applications today are primarily focused on the day-to-day transaction processing needed to run the business while the analytical processing necessary to understand and manage the business is added on after the fact. In contrast to this classification, single applications such as Available-To-Promise (ATP) or Demand Planning exist, which cannot be exclusively referred to one or the other workload category. These applications initiate a mixed workload in that they process small sets of transactional data at a time including write operations and simple read queries as well as complex, unpredictable mostly-read operations on large sets of data with a projectivity on a few columns only. Having a mixed workload is nothing new and has been analyzed on database level a decade ago - the insight that it is originated by a single application is new. Given this and the fact that databases are either built for OLTP or OLAP, it is evident that there is no database management system that adequately addresses the needed characteristics for these complex enterprise applications.
For example, within sales order processing systems, the decision about the ability to deliver the product at the requested time relies on the ATP check. The execution of this results in a confirmation for the sales order containing information about the product quantity and the delivery date. Consequently, the checking operation leads to a database request summing up all available resources in the context of the specific product. Apparently, materialized aggregates could be seen as one solution to tackle the expensive operation of on-the-fly aggregation. However, they fail in processing real-time order rescheduling due to incoming high priority orders leading to a reallocation of all products. Considering this operation as the essential part of the present ATP application encompasses characteristics of analytical workloads with regards to low selectivity and low projectivity as well as aggregation functionality are used and read-only queries are executed. Alongside the aforementioned check operation the write operations declare products as promised to customers work on fine-granular transactional level. While looking at the characteristics of these write operations it is obvious that they belong to the OLTP category as these write-queries are inherent of a high selectivity and high projectivity.
Furthermore, there is an increasing demand for “real-time analytics” – that is, up-to-the moment reporting on business processes that have traditionally been handled by data warehouse systems. Although warehouse vendors are doing as much as possible to improve response times (e.g., by reducing load times), the explicit separation between transaction processing and analytics systems introduces a fundamental bottleneck in analytics scenarios. While the predefinition of data to be extracted and transformed to the analytics system leads to the fact that analytics-based decisions are made on a subset of potential information the separation of system prevents transactional applications from using analytics functionality throughout the transaction processing due to the latency that is inherent in the data transfer.
The aforementioned, simplified example of a complex enterprise application shows workload characteristics, which match with those associated with OLTP and OLAP. As a consequence, nowadays database management systems cannot fulfill the requirements of specific enterprise applications since they are optimized for one or the other category leading to a mismatch of enterprise applications regarding the underlying data management layer. This is mainly because conventional database management systems cannot execute certain important complex operations in a timely manner. While this problem is widely recognized for analytical applications, it also pertains to sophisticated transactional applications. To meet this issue, enterprise applications have become increasingly complicated to make up for shortcomings in the data management infrastructure. One of these solutions has been the packaging of operations as long-running batch jobs. Consequently, this approach slows down the rate at which business processes can be completed, possibly exceeding external requirements. Maintaining pre-computed, materialized results of the operations is another solution that both introduces a higher system complexity due to the maintenance of redundant data and decreases flexibility of applications with the necessity to predefine materialization strategies.
The overall goal is to define application persistence based on data characteristics and usage patterns of the consuming applications in realistic customer environments. Of course it has to be considered that some of the characteristics may be weakened due to the fact that they use “old” data management software. Stonebraker et. al proposes a complete redesign of database architectures considering latest trends in hardware and based on actual usage of data in [5, 6]. Besides, Vogels et. al describe in [2] the design and implementation of a key-value storage system that sacrifices consistency under certain failure scenarios and makes use of object versioning and application-assisted conflict resolution.
We analyzed the typical setup for enterprise applications consisting of a transactional OLTP part and an analytical OLAP part. The major difference between both applications is the way how data is stored and that data is typically kept redundantly available in both systems.
While OLTP is well supported by traditional row-based DBMS, OLAP applications are less efficient on such a layout, which has led to the development of several OLAP-specific storage schemes, in particular multidimensional schemas. However, these schemas are often proprietary and difficult to be integrated with the bulk of enterprise data that is stored in a relational DBMS. This poses serious problems to applications which are to support both, the OLAP and the OLTP world. Given that, complex OLTP queries, such as the computation of a stock for a certain material in a specific location cannot be done on the actual material movements events but is done by using pre-computed aggregates on a pre-defined granularity level. However, three recent developments have the potential to lead to new architectures which may well cope with such demands [4]:
[2] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value store. In SOSP ’07, 2007.
[3] Jens Krueger, Christian Tinnefeld, Martin Grund, Alexander Zeier, and Hasso Plattner. A Case for Online Mixed Workload Processing. In DBTest, 2010.
[4] Hasso Plattner. A common database approach for OLTP and OLAP using an in-memory column database. In SIGMOD Conference, 2009.
[5] Michael Stonebraker and Ugur Cetintemel. ”One Size Fits All”: An Idea Whose Time Has Come and Gone. In ICDE, 2005.
[6] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil Hachem, and Pat Helland. The End of an Architectural Era (It’s Time for a Complete Rewrite). In VLDB, 2007.
Author: Jens Krueger
In fact, enterprise applications today are primarily focused on the day-to-day transaction processing needed to run the business while the analytical processing necessary to understand and manage the business is added on after the fact. In contrast to this classification, single applications such as Available-To-Promise (ATP) or Demand Planning exist, which cannot be exclusively referred to one or the other workload category. These applications initiate a mixed workload in that they process small sets of transactional data at a time including write operations and simple read queries as well as complex, unpredictable mostly-read operations on large sets of data with a projectivity on a few columns only. Having a mixed workload is nothing new and has been analyzed on database level a decade ago - the insight that it is originated by a single application is new. Given this and the fact that databases are either built for OLTP or OLAP, it is evident that there is no database management system that adequately addresses the needed characteristics for these complex enterprise applications.
For example, within sales order processing systems, the decision about the ability to deliver the product at the requested time relies on the ATP check. The execution of this results in a confirmation for the sales order containing information about the product quantity and the delivery date. Consequently, the checking operation leads to a database request summing up all available resources in the context of the specific product. Apparently, materialized aggregates could be seen as one solution to tackle the expensive operation of on-the-fly aggregation. However, they fail in processing real-time order rescheduling due to incoming high priority orders leading to a reallocation of all products. Considering this operation as the essential part of the present ATP application encompasses characteristics of analytical workloads with regards to low selectivity and low projectivity as well as aggregation functionality are used and read-only queries are executed. Alongside the aforementioned check operation the write operations declare products as promised to customers work on fine-granular transactional level. While looking at the characteristics of these write operations it is obvious that they belong to the OLTP category as these write-queries are inherent of a high selectivity and high projectivity.
Furthermore, there is an increasing demand for “real-time analytics” – that is, up-to-the moment reporting on business processes that have traditionally been handled by data warehouse systems. Although warehouse vendors are doing as much as possible to improve response times (e.g., by reducing load times), the explicit separation between transaction processing and analytics systems introduces a fundamental bottleneck in analytics scenarios. While the predefinition of data to be extracted and transformed to the analytics system leads to the fact that analytics-based decisions are made on a subset of potential information the separation of system prevents transactional applications from using analytics functionality throughout the transaction processing due to the latency that is inherent in the data transfer.
The aforementioned, simplified example of a complex enterprise application shows workload characteristics, which match with those associated with OLTP and OLAP. As a consequence, nowadays database management systems cannot fulfill the requirements of specific enterprise applications since they are optimized for one or the other category leading to a mismatch of enterprise applications regarding the underlying data management layer. This is mainly because conventional database management systems cannot execute certain important complex operations in a timely manner. While this problem is widely recognized for analytical applications, it also pertains to sophisticated transactional applications. To meet this issue, enterprise applications have become increasingly complicated to make up for shortcomings in the data management infrastructure. One of these solutions has been the packaging of operations as long-running batch jobs. Consequently, this approach slows down the rate at which business processes can be completed, possibly exceeding external requirements. Maintaining pre-computed, materialized results of the operations is another solution that both introduces a higher system complexity due to the maintenance of redundant data and decreases flexibility of applications with the necessity to predefine materialization strategies.
Trends in Enterprise Data Management
Enterprise applications heavily rely on database management systems to take care of the storage and pro- cessing of their data. A common assumption of how enterprise applications work (row based, many updates) has led to decades of database research. A rising trend in database research shows how important it is to rethink how persistence should be managed to leverage new hardware possibilities and discard parts of the over 20-year old data management infrastructure.The overall goal is to define application persistence based on data characteristics and usage patterns of the consuming applications in realistic customer environments. Of course it has to be considered that some of the characteristics may be weakened due to the fact that they use “old” data management software. Stonebraker et. al proposes a complete redesign of database architectures considering latest trends in hardware and based on actual usage of data in [5, 6]. Besides, Vogels et. al describe in [2] the design and implementation of a key-value storage system that sacrifices consistency under certain failure scenarios and makes use of object versioning and application-assisted conflict resolution.
We analyzed the typical setup for enterprise applications consisting of a transactional OLTP part and an analytical OLAP part. The major difference between both applications is the way how data is stored and that data is typically kept redundantly available in both systems.
While OLTP is well supported by traditional row-based DBMS, OLAP applications are less efficient on such a layout, which has led to the development of several OLAP-specific storage schemes, in particular multidimensional schemas. However, these schemas are often proprietary and difficult to be integrated with the bulk of enterprise data that is stored in a relational DBMS. This poses serious problems to applications which are to support both, the OLAP and the OLTP world. Given that, complex OLTP queries, such as the computation of a stock for a certain material in a specific location cannot be done on the actual material movements events but is done by using pre-computed aggregates on a pre-defined granularity level. However, three recent developments have the potential to lead to new architectures which may well cope with such demands [4]:
- In-Memory Databases,
- Column-Oriented Storage Schemas, and
- Query-aware light-weight Compression.
Enterprise Application Characteristics
In order to define the requirements of an enterprise-specific data management realistic enterprise applications and customer data have been analyzed. The most important findings based on the research so far and their implications on database design are:- Enterprise applications typically present data by building a context for a view, modifications to the data only happen rarely. In fact, over 80% of the workload in an OLTP environment are read operations. Hence column-oriented, in-memory databases that are optimized for read operations perform especially well in enterprise application scenarios.
- Tables for transactional data typically consist of 100-300 columns and only a narrow set of attributes is accessed in typical queries. Column-oriented databases benefit significantly from this characteristic as entire columns, rather than entire rows, can be read in sequence.
- Enterprise data is sparse data with a well known value domain and a relatively low number of distinct values. Therefore data of enterprise applications qualifies very well for data compression as these techniques exploit redundancy within data and knowledge about the data domain for optimal results. Abadi et al. have shown in [1] that compression applies particularly well to columnar storages. Since all data within a column a) has the same data type and b) typically has similar semantics and thus low information entropy, i.e. there are few distinct values in many cases.
- Enterprise applications typically reveal a mix of OLAP and OLTP characteristics [3]. To support both, the data storage of in-memory databases are split into two parts, one optimized for reading and one for writing.
- Data growth in enterprise systems has not shown the same growth rate as for example social networks. Despite the fact of a growing number of captured events in enterprise environments all events are based on actual events related to the business and have an inherent processing limit due to the size of the company.
References
[1] Daniel J. Abadi, Samuel R. Madden,2In SIGMOD Conference, 2006.[2] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value store. In SOSP ’07, 2007.
[3] Jens Krueger, Christian Tinnefeld, Martin Grund, Alexander Zeier, and Hasso Plattner. A Case for Online Mixed Workload Processing. In DBTest, 2010.
[4] Hasso Plattner. A common database approach for OLTP and OLAP using an in-memory column database. In SIGMOD Conference, 2009.
[5] Michael Stonebraker and Ugur Cetintemel. ”One Size Fits All”: An Idea Whose Time Has Come and Gone. In ICDE, 2005.
[6] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil Hachem, and Pat Helland. The End of an Architectural Era (It’s Time for a Complete Rewrite). In VLDB, 2007.
Author: Jens Krueger
Subscribe to:
Posts (Atom)